Inertial propeller
(Theory)

The offered material is continuation of clause of the author: “ The Third law of Newton is not carried out for
a unbalanced body with rotary fluctuation ““ // - “I'paButon” # 12, 2005, p. 9.

The principle of operation of the device “Inertial propeller” can be explained
using the scheme without a gyroscope (see Fig 1).

Fig 1

Along the ring 4 with radius R, masses m1 and m2 can oppositely-symmetrically
move using the power drive. In order to simplify the numerical evaluations, we
set m1 = m2, while the sum of masses m1 + m2 = m, where m is the mass of
ring 4 along with the drive. The sequence of movement is as follows. Masses m1
and m2 speed up continuously with the tangential acceleration a within the
sectors 1-2 and 3 - 2 respectively. Masses m1 and m2 slow down
continuously with the tangential acceleration -a within the sectors 2-3 and 2-1
respectively to a full stop at points 3 and 1. Then, the acceleration/deceleration
process is repeated in the opposite direction. The point 2 is the acceleration
reversal one. In order that the acceleration/deceleration process started and was
over at points 1 and 3, the braking moment Mr should be taken to be equal to the
acceleration moment: Mt = Ma . For definiteness sake, let the braking torque Mr
be the frictional moment.

So, under the action of the acceleration moment Ma , the acceleration of masses
ml and m2 begins at initial points 1 and 3 respectively and ends at point 2 where
the rotary drive is turned off (Ma = 0). At that instant, the pulse P of mass m is
equal to zero: P = 0, and each of masses m1 and m2 takes on the tangential
pulse Pm # 0.

Further, let us assume first that the braking moment is absent within the
sectors 2-3 and 2-1(Mr= 0).

The subsequent movement of masses m1 and m2 occurs mechanically. At that,
under the action of the centripetal force and in conformity with the law of action
and reaction, the turning of pulse vectors Pm will occur opposite to the X axis
direction (without change in their values). At the same time, the vector of pulse P



will increase along the X axis direction. When masses m1 and m2 move to the
points 3 and 1, these pulses will become numerically equal and opposite in
direction (2Pm = P). In this case, the system common centre of gravity will remain
motionless.

Let us repeat the interaction process beginning from the point 2 with turned-
on braking moment, Mr# 0 (at the same time, Ma = 0). For definiteness sake,
the braking moment Mr is the moment of dry friction numerically equal to

Fig 2

the accelerating moment: Mr = Ma.

So, prior to beginning of slowing down of masses m1 and m2, each of them has
taken on the tangential pulse equal to Pm. In this case, the pulse P of the rest of
mass m of the system is equal to zero: P = 0 as mass m was motionless at this
instant. The subsequent movement of masses m1 and m2 occurs mechanically
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but their motion is hindered by the friction force Ff on the mass m side which
generates the frictional moment Mr (it is the braking moment). For the greater
obviousness sake, we represent a part of the ring 4 in the form of inclined planes
as shown in Fig.2 and enlarged in Fig 3. Hereinafter: 6 - center of gravity for

mass m, 7 - center of gravity for sum (m1 + m2), 5 - common center of gravity
for the whole system. The vector of pulse Pm can be resolved into two
components: parallel to the plane - Pt and perpendicular to the plane - Pn. In the
course of sliding of masses m1 and m2 over the planes 4 against the friction
forces Ff, the work is done, therefore, the magnitude of pulse Pt will decrease.
However, as it is well known, the change in the magnitude of pulse is the force F
= 0(Pt)/ot where 0(Pt)/0t 1s the derivative of pulse Pt with respect to time t.
The force F is numerically equal to the friction force: F = Ff and is in opposition
to the latter. The force F is force with which the masses (m1 + m2) act on mass m.
By its nature, it is inertial force. Let us resolve the force F for each mass m1 and
m?2 into two components: Fx and Fz. The forces Fz are mutually balanced while
the forces Fx are not balanced. Masses m1 and m2 together with the ring 4
form the common mechanical system, therefore, the forces Fx are applied to the
common center of gravity 5 of the system. Hence it follows that the center of
gravity 5 of the whole system is shifted in the direction of action of forces Fx.
The described interaction is similar to that of two bodies in case of the oblique
inelastic impact with each other when, initially, one of bodies was motionless (m)
while the other (m1 + m2) has moved (i.e., had a pulse). After collision, these
bodies stick together and continue the motion as a single whole. Fig 5 and Fig 6
present the illustrative example of interaction of two plasticine balls 8 imitating
the direct impact as a result of which the common center of gravity 5 is shifted.
Position 9 in Fig 6 shows the location of the common center of gravity 5 of the



system prior to interaction.

The unit “Inertial Propeller” (Pub. No. US 2005/0169756 A1) differs from one
described in the text in that one of masses, for example, m2, is replaced by a
gyroscope. In the unit “Inertial Propeller” (see Pub. No. US 2005/0169756 A1,
Fig.3), the points a, b and ¢ correspond to points 1, 2 and 3 of the current
description. The mass of imbalance 7 corresponds to mass m1. The starting
moment Mn corresponds to the accelerating moment Ma while the counter
moment (-Mn) corresponds to the braking moment Mr in the current description.
At the point b of the unit “Inertial Propeller”, there is a reversal of the rotary
moment of imbalance 7: the accelerating moment Mn is turned off and the
braking moment (-Mn) is turned on. It is evident that the braking moment (-Mn) =
Mr can be of any nature: it can be moment of dry friction as shown above or
electrodynamic moment originating as a result of the electric motor operation, for
example, in the mode of current generation.

It should be noted once more (see Pub. No. US 2005/0169756 A1, Fig 3) that,
under the action of the drive moment M, the acceleration of imbalance 7 occurs
within the sector a - b. At point b, the moment Mn is turned off (i.e. Mu = 0).
The position of imbalance 7 at point b corresponds to the initial position of
plasticine balls 8 in Fig. 5 of the current description. At that, imbalance 7 takes
on the tangential pulse Pm =m]1- a - t = m1V2¢Ra, where m1 is the mass of
imbalance 7, a is tangential acceleration of imbalance, t is a duration of turning
from point a to point b and ¢ is angle to the X axis, R is the radius of rotation.
The pulse P of the rest of mass (m) of the unit at this instant was equal to zero as
the mass m at that moment is motionless (position 6 in Fig 5 hereof). At that, the
numerical value of tangential pulse of imbalance 7 at point b is Pm = m1VaRa.
The subsequent motion of imbalance 7 in the sector b - ¢ occurs mechanically
but, at that, the centripetal force on the mass m side and braking moment (-Mmn)
on the side of the electric motor of rotation drive are applied to it. As a result of
turning of the vector Pm according to the law of action and reaction, its projection
onto X axis increases:

Px = Pm- sing = mIVnRa -sing,
and, at the same time, the pulse P of the rest of mass (m) in the opposite
direction increases which is equal to:

P =ml\2¢Ra sing.
In this case, the centers of gravities 6 and 7 draw together while the common
center of gravity 5 remains motionless (see Fig 5 hereof). Within the range of
angles of m/2>¢ >0, Px>P,i.e.:

AP = Px — P = m1VnRa ‘sinp — m1V2¢Ra -sing # 0.

Because, at that, the value of the pulse Pm decreases simultaneously under the
action of the braking moment (-Mn) then, along the X axis, the component of force
F appears, Fx = 0(Px)/ot (where Px is the projection of vector Pt onto the X axis,
see Fig 3 hereof), which is applied to the common center of gravity 5 of the
whole mechanical system.
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The force Fx shifts the common center of gravity 5 of the system in the same
manner as shown in Fig 5 - Fig 6 hereof and well known from experiments of
inelastic collision of, for example, plasticine balls 8.
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